A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions

نویسندگان

  • Yijing Li
  • Prakash P. Shenoy
چکیده

W describe a framework and an algorithm for approximately solving a class of hybrid influence diagrams (IDs) containing discrete and continuous chance variables, discrete and continuous decision variables, and deterministic conditional distributions for chance variables. A conditional distribution for a chance variable is said to be deterministic if its variances, for each state of its parents, are all zeroes. The solution algorithm is an extension of Shenoy’s fusion algorithm for discrete influence diagrams. To mitigate the integration and optimization problems associated with solving hybrid IDs, we propose using mixture of polynomials approximations of conditional probability density and utility functions and piecewise linear approximations of nonlinear deterministic conditional distributions for continuous chance variables. The class of hybrid IDs that can be solved by our framework are those that do not involve divisions. The framework and algorithm are illustrated by solving two small examples of hybrid IDs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Hybrid Influence Diagrams with Deterministic Variables

We describe a framework and an algorithm for solving hybrid influence diagrams with discrete, continuous, and deterministic chance variables, and discrete and continuous decision variables. A continuous chance variable in an influence diagram is said to be deterministic if its conditional distributions have zero variances. The solution algorithm is an extension of Shenoy’s fusion algorithm for ...

متن کامل

Arc reversals in hybrid Bayesian networks with deterministic variables

This article discusses arc reversals in hybrid Bayesian networks with deterministic variables. Hybrid Bayesian networks contain a mix of discrete and continuous chance variables. In a Bayesian network representation, a continuous chance variable is said to be deterministic if its conditional distributions have zero variances. Arc reversals are used in making inferences in hybrid Bayesian networ...

متن کامل

Inference in Hybrid Bayesian Networks with Nonlinear Deterministic Conditionals

To enable inference in hybrid Bayesian networks containing nonlinear deterministic conditional distributions using mixtures of polynomials or mixtures of truncated exponentials, Cobb and Shenoy in 2005 propose approximating nonlinear deterministic functions by piecewise linear ones. In this paper, we describe a method for finding piecewise linear approximations of nonlinear functions based on t...

متن کامل

A comparison of two approaches for solving unconstrained influence diagrams

Influence diagrams and decision trees represent the two most common frameworks for specifying and solving decision problems. As modeling languages, both of these frameworks require that the decision analyst specifies all possible sequences of observations and decisions (in influence diagrams, this requirement corresponds to the constraint that the decisions should be temporarily linearly ordere...

متن کامل

Probabilistic similarity networks

I address practical issues concerning the construction of normative expert systems, and examine the influence diagram as a potential framework for representing knowledge in such systems. I introduce an extension of the influence-diagram representation called a similarity network. A similarity network is a tool for constructing large and complex influence diagrams. The representation allows a us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Decision Analysis

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2012